Dynamic of Threshold Solutions for Energy-critical Nls

نویسنده

  • THOMAS DUYCKAERTS
چکیده

We consider the energy-critical non-linear focusing Schrödinger equation in dimension N = 3, 4, 5. An explicit stationnary solution, W , of this equation is known. In [KM06], the energy E(W ) has been shown to be a threshold for the dynamical behavior of solutions of the equation. In the present article, we study the dynamics at the critical level E(u) = E(W ) and classify the corresponding solutions. This gives in particular a dynamical characterization of W .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

Dynamics for the Energy Critical Nonlinear Schrödinger Equation in High Dimensions

In [7], T. Duyckaerts and F. Merle studied the variational structure near the ground state solution W of the energy critical NLS and classified the solutions with the threshold energy E(W ) in dimensions d = 3, 4, 5 under the radial assumption. In this paper, we extend the results to all dimensions d ≥ 6. The main issue in high dimensions is the non-Lipschitz continuity of the nonlinearity whic...

متن کامل

An Invariant Set in Energy Space for Supercritical Nls in 1d

We consider radial solutions of a mass supercritical monic NLS and we prove the existence of a set, which looks like a hypersurface, in the space of finite energy functions, invariant for the flow and formed by solutions which converge to ground states. §

متن کامل

m at h . A P ] 1 6 O ct 2 00 6 MINIMAL - MASS BLOWUP SOLUTIONS OF THE MASS - CRITICAL NLS

We consider the minimal mass m0 required for solutions to the mass-critical nonlinear Schrödinger (NLS) equation iut + ∆u = μ|u|4/du to blow up. If m0 is finite, we show that there exists a minimal-mass solution blowing up (in the sense of an infinite spacetime norm) in both time directions, whose orbit in Lx(R d) is compact after quotienting out by the symmetries of the equation. A similar res...

متن کامل

Numerical Simulations of the Energy- Supercritical Nonlinear Schrödinger Equation

We present numerical simulations of the defocusing nonlinear Schrödinger (NLS) equation with an energy supercritical nonlinearity. These computations were motivated by recent works of Kenig-Merle and Kilip-Visan who considered some energy supercritical wave equations and proved that if the solution is a priori bounded in the critical Sobolev space (i.e. the space whose homogeneous norm is invar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008